ON MOIION OF KOWALEWSKI'S GYROSCOPE

(OB ODNOM DVIZHENII GIRUBKOPA KOVALENSKOI)

PMM Vol.28, № 3, 1964, pp. 521-522

Iu.A. ARKHANGEL'SKII
(Moscow)

(Received September 20, 1963)

In the paper [1], using the small-parameter method, we found the first terms of the series expansion of the periodic solutions of the equations of motion of a heavy rigid body about a fixed point when the body spins rapidly about the z-axis. The study of the corresponding motion of this body cepended essentially on the constant component of the speed of precession which vanishes under the approximation taken, for example, in the case

$$
\begin{equation*}
z_{0}=-0,(A-C)(B-C) / A B=1 / 4 \tag{0.1}
\end{equation*}
$$

We shall calculate below the constant component of the speed of precession for Kowalewski's gyroscope in th. Bobylev-Steklov case (the solution of the inttial system of equations of motion is periodic, and the condition $A=B=2 C, V_{0}=z_{0}=0$ satisfies equation (0.1)), and we investigate the resulting motion.

1. As is known [2], the equations of motion of a heavv rigid body about a I'Ixed point in Kowalewski's case
$2 d p / d t=q r, \quad 2 d q / d t=-p r-\varepsilon c^{2} \gamma^{\prime \prime}, \quad d r / d t=\varepsilon c^{2} \gamma^{\prime}, \quad c^{2}=M g\left|x_{0}\right| C^{-1}$
$d \gamma / d t=r \gamma^{\prime}-q \gamma^{\prime \prime}, \quad d \gamma^{\prime} / d t=p \gamma^{\prime \prime}-r \gamma, \quad d \gamma^{\prime \prime} / d t=q \gamma-p \gamma^{\prime}, \quad \varepsilon=\operatorname{sign} x_{0}$ are satisfied by the particular solution

$$
p=p_{0}, \quad q=0, \quad r=-\varepsilon c^{2} p_{0}{ }^{-1} r^{\prime \prime}
$$

and the system (1.1) has, in addition, two first integrals

$$
\gamma-1 / 2 \varepsilon c^{3} p_{0}^{-2} \gamma^{\prime 2}=\gamma_{0}-1 / 2 \varepsilon \varepsilon c^{2} p_{0}^{-2} \gamma_{0}^{\prime 2}, \quad \gamma^{2}+\gamma^{\prime 2}+\gamma^{\prime \prime 2}=1
$$

Here $p_{0}, q_{0}, r_{0}, \gamma_{0}, Y_{0}$ and $Y_{0}{ }^{*}$ denote the initial values o: the variables.

We shall assume that at the initial instant of time the axis of symmotry of the ellipsoid of inertia z is inclined to the vertical at some angle θ_{0} and that a nigh angular velocity r_{0} about this axis is imparted to the rigid body. Without losing generality, we select as the movable coordinate system a system in which at the initial instant of time the positive z and x axes do not form an obtuse angle with the direction of the gravitational force. Then in this coordinate system the quantities r_{0} and x_{0} may take on either positive or negative values, and the initia? values y_{0} and $y_{0}{ }^{*}$ w111 satisfy conditions $\gamma_{0} \geqslant 0, \gamma_{0}{ }^{\prime \prime} \geqslant 0$.

Since the system (1.1) is self-contained, we shall assume that $y_{0}^{\prime}=0$.
Under the above assumptions and condition

$$
\begin{equation*}
0<\gamma_{0}^{\prime \prime}<1 \tag{1.2}
\end{equation*}
$$

(the cases $\gamma_{0}{ }^{\prime \prime}=0$ and $Y_{0}{ }^{\prime \prime}=1$ are discussed below) the solution of equations (1.1) is found in the form

$$
\begin{gathered}
p=-\varepsilon c \mu, \quad q=0, \quad r=\frac{r_{0} h_{1}}{\gamma_{0}{ }^{\prime}} d n u, \quad \gamma=\sqrt{1-\gamma_{0}{ }^{\prime 2}}+\frac{\varepsilon\left(h_{1}{ }^{2} d n^{2} u-\gamma_{0}{ }^{\prime \prime}\right)}{2 \mu^{2}}, \\
\gamma^{\prime}=\frac{k^{2} h_{1}{ }^{2}}{2 \mu^{2}} \operatorname{sn} u \operatorname{cn} u, \quad \gamma^{\prime \prime}=h_{1} d u u \\
u=-\frac{h_{1} \tau}{2}+u_{0}, \quad \tau=\frac{\varepsilon r_{0} t}{\gamma_{0}{ }^{\prime \prime}}, \quad k^{2}=1-\frac{h_{2}{ }^{2}}{h_{1}{ }^{2}}, \quad \mu=\frac{c \gamma_{0}^{\prime \prime}}{r_{0}} \\
h_{j}{ }^{2}=\gamma_{0}{ }^{\prime \prime 2}-2 \varepsilon \mu^{2} \sqrt{1-\gamma_{0}{ }^{\prime \prime 3}}-2 \mu^{4}-(-1)^{j} 2 \mu^{2}\left[1-\gamma_{0}{ }^{2}+2 \varepsilon \mu^{2} \sqrt{1-\gamma_{\theta}{ }^{\prime 2}}+\mu^{4}\right] \\
(j=1,2)
\end{gathered}
$$

Here μ is a small parameter. We note the relation

$$
\begin{gather*}
k^{2}=4 \mu^{2} \frac{\sqrt{1-\gamma_{0}{ }^{22}}+\varepsilon \mu^{2}}{h_{1}{ }^{2}}+\mu^{6}(\ldots) \\
h_{1}=\gamma_{0}{ }^{\prime \prime}\left[1-\frac{k^{2}(\varepsilon-1)}{4}\right]+k^{4}(\ldots), \quad u_{0}=\frac{\pi(1-\varepsilon)}{4}+k^{2}(\ldots) \tag{1.4}
\end{gather*}
$$

2. For an analysis of the motion of Kowalewski's gyroscope we introduce the Euler angles θ, φ and

$$
\begin{equation*}
\cos \theta=\gamma^{\prime \prime}, \quad \frac{d \psi}{d t}=\frac{p \gamma+q \gamma^{\prime}}{1-\gamma^{\prime \prime 2}}, \quad \frac{d \varphi}{d t}=r-\frac{d \psi}{d t} \cos \theta \quad\left(\operatorname{tg} \varphi_{0}=\frac{\gamma_{0}}{\gamma_{0}^{\prime}}\right) \tag{2.1}
\end{equation*}
$$

From the first formula of (2.1) and Equations (1.3) and (1.4), we find

$$
\begin{equation*}
\cos \theta=\gamma_{0}{ }^{\prime \prime}\left[1+\mu^{2} \frac{\varepsilon \sqrt{1-\gamma_{0}^{\prime \prime 2}}}{\gamma_{0}{ }^{\prime 2}}\left(\cos r_{0} t-1\right)\right]+\mu^{4}(\ldots) \tag{2.2}
\end{equation*}
$$

The expression for the angle of precession takes on the form [3]

$$
\begin{gather*}
\psi-\psi_{0}=-\frac{\varepsilon \mu^{2} \sin r_{0} t}{\gamma_{0}{ }^{\prime} \sqrt{1-\gamma_{0}{ }^{\prime 2}}}+\frac{\mu^{3} c N\left(m_{0}\right)}{2 \gamma_{0}{ }^{\prime 2}} t+\ldots \tag{2.3}\\
N\left(m_{0}\right)=\frac{m_{0}+12_{2}}{4 m_{0}\left(m_{0}+1\right)}+\frac{3}{2}+m_{0}(3-2 \varepsilon), \quad m_{0}=\frac{\gamma_{0}{ }^{\prime 2}}{1-\Upsilon_{0}{ }^{\prime \prime 2}}
\end{gather*}
$$

We note on the basis of (1.2) that $N\left(m_{0}\right)>0$; from this it follows that for sufficiently small μ, the constant component of the speed of precession will never vanish.

From the last two formulas of (2.1) we have for the spin angle

$$
\begin{equation*}
\varphi-i / 2 \pi=\left(r_{0}-\frac{M g x_{0}}{C r_{0}} \sqrt{1-\Upsilon_{0}^{\prime 2}}\right) t+\mu^{2}(\ldots) \tag{2.4}
\end{equation*}
$$

To the three arbitrary constants $\cos \theta_{0}=\gamma_{0}{ }^{\prime \prime}$, ψ_{0} and r_{0} (where r_{0} is large), which appear in these formulas, we may add li] (by replacing t by $t+h$) a fourth arbitrary constant φ_{0}, which is related to h, on the basis of (2.4), by Formula

$$
\varphi_{0}=1 / 2 \pi+r_{0} h+\mu(\ldots)
$$

Comparing the resulting approximate expressions for the Euler angles with the analogous expressions of [1], we can convince ourselves that they coincide, except for the constant of the speed of precession, whose order of smallness, μ^{3}, is higher than that considered in [1]. For this reason, the center of a spherical rectangle in which is inscribed the ellipse which, in a first approximation, is the trajectory of the axis of symmetry of the gyroscope on the i'ixed unit sphere. [1], will move aiong a corresponding parallel. The speed of displacement will be equal to the constant component of the
speed of precession.
The spin of Kowalewski's gyroscope, as is evident from Formula (2.4), will differ only slightiy from uniform rotation with a high angular velocity r_{0}.
3. Let us consider the motion of Kowalewski's gyroscope for the cases $\gamma_{0}{ }^{\prime \prime}=0$ and $\gamma_{0}{ }^{\prime \prime}=1$.

If $\gamma_{0}{ }^{\prime \prime}=0\left(r_{0} \neq 0\right)$, we obtain Equations $p_{0}=0$ and $\gamma^{\prime \prime}=0$, which leads to the case of physical pendulum.

In order to study the case $\gamma_{0}{ }^{\prime \prime}=1$, we select the moving coordinate axis x in such a way that $x_{0}>0$. Then, setting

$$
\gamma_{0}=\gamma_{0}^{\prime}=u_{0}=0, \gamma_{0}^{\prime \prime}=\varepsilon=h_{1}=1, \quad k=2 \mu^{2}, \quad u=1 / 2 r_{0} t
$$

according to the formulas of Sections 1 and 2, retaining only the first terms of the series expansion in powers of μ and omitting the arbitrary constants which are not relevant to what follows, we have

$$
\begin{equation*}
\cos \theta=1-2 \mu^{4} \sin ^{2}\left(1 / 2 r_{0} t\right)+\ldots, \psi=1 / 2 r_{0} t, \quad \varphi=1 / 2 r_{0} t \cdots \ldots \tag{3.1}
\end{equation*}
$$

Let us draw a fixed sphere of unit radius about the fixed point and consider on this sphere a circle of radius $a\left(a=\sqrt{2} \mu^{2}\right)$ with its center at the point of intersection of the sphere with the downward direction of the ve:tical. Then the trajectory of the axis of symmetry of the gyroscope in this case will be the curve $\theta=a \sin \psi$, consisting of two circles of radius $\frac{1}{2}$ a which are tangent to each other. Describing this sinusoidal spiral, the axis of symmetry will, in a first approximation, perform a periodic motion with period $T=4 \pi / r_{0}$. The characteristic rotation of the body, as is evident from the last formula of (3.1), will differ only slightly from uniform revolution with a high angular velocity $\frac{1}{2} r_{0}$.

BIBLIOGRAFHY

1. Arkhangel'skif, Iu.A., O dvizhenil privedennogo v bystroe vrashchenie tiazhelogo tverdogo tela vokrug nepodvizhnol tochki (On the motion about a fixed point of a fast spinning heavy solid). FMM Vol.27, No 5, 1963.
2. Appel'rot, G.G., Ne vpolne simmetrichnye tiazhelye giroskopy (Not-completely-symmetric heavy gyroscopes). Collection: "Motion of a Rigid Body about a Fixed Point). Izd.Akad. Nauk SSSR, 1940.
3. Arkhangel'skii, Iu.A., ob cdnom dvizhenii uravnoveshennogo giroskopa v n'iutonovskom pole sil (On a motion of an equilibrated gyioscope in the Newtonian force field). PMM Vol.27, № 6, 1963.
